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The theory developed in [l] is applied to a certain class of ordinary differential 
equations in a Hilbert space. Sufficient conditions are indicated for the appear- 
ance of auto-oscillations on the passage of a certain parameter through its crit- 

ical value (existence of that value is established by the theory of normal opera- 
tors). A nonlinear parabolic equation is investigated as an example. 

The auto-oscillating modes are given for the general equation of [l] in the 

form of series in fractional powers of the supercritical parameter 6, and in the 

form of series in powers of the amplitude coefficient accompanying the neutral 
perturbation in the Fourier expansion. The perturbation theory is used to study 
the stability of the auto-oscillations. The terminology and the basic notation 
of [l] are all retained. 

1. A cla~r of rqurtion: wfth auto-otcillating 8olutlon8. Let us 
consider the ordinary differential equation 

_ drldt + Az: - iiBr = K (v, IL) (1.1) 

in the Hilbert space H , under the following assumptions: 
1) The operator A is self-conjugate, positive definite and coercive (maps DAon all 

H in one-to-one correspondence). The operator A-’ is completely continuous. 

2) The operator B is linear, with a domain d definition dense in liand is subordinate 
to the operator A’; in the sense that Dg, 2 DAjlz, DI+ -II D,z.; and the operators 
A-‘2Br and A-‘ZBi are bounded (B,, and Bi denote the real and imaginary part of the 
operator B). 

3) The real part B, of B is not zero. 
4) The operator Bi commutes with A-‘B, and the operator B,. commutes with A-’ 

Bi (_I-‘B,.) u = (A-IB,) BP 

B,A-‘u = ,i-lB,u (u E DA’/‘) (1.2) 

By’ JJ$T~ we denote the space of vector functions u (t) whose values belong to Hdefi- 
ned for t E [(I, 2n], continuous and having the following finite norm 

5) The nonlinear operator Ii acts continuously from W, into L2 ((0, 2x), H) and is 
analytic over the set (v, h) near the point (0, A,,) of the space fi X 11 for any &,. 
Moreover it is assumed that the Frechet derivative K,. (‘3, A) I- () for all h. 
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We shall assume that an operation of complex conjugation is defined on the space 
H : ~1 --t u* and the operators A, B and lirare real: (Au)* = Au* etc. 

Let us consider the following eigenvalue problem 

A-p, - U3,rp, = 0 (1.3) 

Inverting the operator A we arrive at the equation 

‘po = ?J’rp,, T = A-l& (1.4) 

The operator T is self-conjugate and completely continuo~ in the energy space HI of 
the operator A. Indeed, for any u, u E H, we have 

(?‘u, z& = (A’IzA-~+, A’/w)~ = (Z&U, u)~ = (u, B,.v);l = (u, TU)H, (1.5) 

Conditions (1) and (3) imply that T # 0. By the Hilbert-Schmidt theorem there exists 
at least one nonzero real eigenvalue h,, of the operatorT.Conditions (1) and (2) imply 
that any eigenvector ‘p of T satisfies (1.3) (in particular rp E DA). Condition (4) imp- 
lies that a (finite-dimensional) characteristic subspace H, of the operator 7 correspon- 
ding to the eigenvector h,, is invariant with respect to the operator Bi. 

Operator Bi is symmetric onH, Let us assume that it is nondegenerate on N, and 
has dim H,, eigenvectors. Let Cp be one of these vectors. Then 

- h,Birp = O*‘p (1.6) 

where o,, is a real number different from zero. Applying the operation of complex 
conjugation to the above equation we find that q* is also an eigenvector of B, with a 
corresponding eigenvalue to0 / A,,. 

Thus Hb is an even-dimensional subspace and the spectrum of the operator Bj on 
this space is symmetrical with respect to zero. Obviously, cp is an eigenvector of the 
operator A - h,B Ag, - h,Bcq = io,y (f-7) 

Theorem 1.1. Let the conditions (1) to (5) hold, 1,s be a double eigenvalue of 
the operator T and the operator Bi be nondegenerate on the characteristic subspace 
H, corresponding to ha. Then A, is the branch point of a cycle for (1.1). 

Proof. It is sufficient to verif) that condition (3.6) of Theorem 3.1 of [l] holds. 
We note that the operator L = I - hA-1B - ioA-1 : HI --+ HI is normal for any real 

X and o. Indeed, simple calculations show that its real & and imaginary & parts have 
the form L, = I - hA-‘B,, Li zz - ?~/l-‘Ui -- on-1 (1.8) 

Condition (4) implies that L, and Li commute. The normality of L implies that 
ker L = kerL *. Taking into account the conditions (1) and (2) we can now easily deduce 
that cp is the only eigenvector of the operator A - &B co~es~~ding to the eigenvalue 
800 

‘Q- &B*cp = - io@ (2.9) 

Taking into account (1.7) we now obtain 

Be (% ~9~ = $- II cp II;, > 0 (i.ilV 

We note that Theorem 1.1 can be easily generalized. It can e. g, be assumed that 
the operator A has an imaginary component and that the operator B is subordinate to 
Aa (0 < a < 1). Naturally, in this case the conditions (4) and (5) are appropriately 
altered. 

The fact that Eqs. (1.3) or (X.4) are invariant under a certain group of transformations 
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(e. g. relative to some representation of a group of peripheral rotations in an operator 
ring) may be the reason for the existence of a double eigenvalue. This occurs in the 

following example. 

Example. Let r and 8 be polar coordinates on a plane and Q a ring, Q = 
{(r, Q:O<r,<r<r,}.c onsider the parabolic equation 

&d 

i 

au 
~=au+h u+ax, ) + u3 (1.11) 

with real parameters h, a + 0. We shall seek its solutions satisfying the boundary con- 
ditions 

u I ?-=rl, I-* = 0 (1.12) 

inacylinder--<(cm; (r,@EiJ. 
The system (1.11) and (1.12) can be treated as an ordinary differential equation in 

a Hilbert space H = Ls (Q) , and we must assume 

Au = --du, Bu = u + a 13u / ~36, Ku = u3 (1.13) 

The domain of definition of the operator A is a functional subspace of TV?’ (Q), satis- 
fying the condition (1.12), and Dg is the energy space H1 = D (Al/a) of the operator 
A. We further have B,u = u and Bin = i-1 &‘u / d0, and the conditions (1) - (5) can 
now be easily verified. 

Let us consider the eigenvalue problem 

- Au = Au, n 1 r=rl, tr = 0 (1.14) 

Using the Fourier expansions in (i we confirm, that the eigenfunctions are 

U inn = exp i&q,,, (r) (m = 0, f 1,. . . ; n = 1,2,. . .) (1.15) 

Here &,, denotes the eigenfunction of the Sturm-Liouville problem corresponding to 
the n-th (in magnitude) eigenvalue h,, 

L,%n, = - c$j + ;- & - $)&an = &nn9mn (1.16) 

qmn h) = h, (G) = 0 
Under the boundary conditions (1.16) the differential operator &,, is positive definite 

in the space L, with the weight r on [r,, r2] . It is well known that all its eigenvalues 

h,,are simple. Moreover, L,,, increases strictly with m,therefore by the minimax prin- 

cipleh ,,also increases strictly with n. 

We shall show that the numbers h,, (m = 0, 1, . . .; n = 1, 2, . . .) are all dis- 

tinct provided that the quantity e = (r2 - rl) / rl does not assume values which belong 

to a certain enumerable set. 
Let us select some fixed natural numbers m, n ,p, q and verify, for which values of 

e the equation h,, - h,, = 0 holds. The substitution r = r, (1 -j- ez) yields (1.16) 

in the form 

- 
[ 

& + * & - $$!$-I +,,, = &T12a2+)mn, lPmn IX_ = 0 (1.17) 

The perturbation theory implies that the eigenvalue ~mnr12E2 is analytic in e and 
tends to n2rc2 at e --t 0 . From this we deduce that h,, - A,, is analytic in 8 and 

not identically zero when n =f= q. But the latter is also true when n 5 q and m # p 
since A,, > Ar,s when m > p. Thus the set X mnP,, of those e for which h,, = &Y 



Investlgtlon of auto-oscillations of a continuous medium 427 

is at most enumerable. The set x which is a union of all xmnpp , is also enumerable. 
If E ?? 2 ,then h,, (rt. = 1, 2, . . .) denote the simple, and h,, (n > 0) the double 
eigenvalues of the operator A . The eigenvalues Tma of the operator Bi lie on the 

characteristic subspace of A, corresponding to h,, (n-z. > O), consequently Bi is non- 
degenerate. Applying Theorem 1.1, we now arrive at the following result. 

Let E s Z . Then a sequence of critical values h,, (m, n = 1, 2, . . .) of the par- 

ameter h exists, which are the branch points of the cycle. It can easily be shown that 

the passage of the parameter h through the values h,, (n = 1, 2, . . .) is accomp- 
anied by the branching of the stationary solutions of the system (1.11) and (1.12) from 

zero. 
We note that the auto-oscillating solution of the Navier-Stokes equations investigated 

in p, 31, can also be included in the scheme described above. 

2. Reprenentrtion of a cycle in term8 of power aerial. In Cl] the 
Liapunov-Schmidt method was used to study a periodic, auto-oscillating mode of mot- 
ion of a viscous fluid which occurs when the Reynolds number (or some other parameter 

y) passes through its critical value. We also consider a more general problem of appe- 

arance of a cycle for an ordinary differential equation in the Banach space X 

o dv / dz + Au = K (v, 6) (2.1) 
where o is the unknown cyclic frequency, t = o-ir is time, A is a linear (unbounded) 
operator and K is a nonlinear operator dependent analytically on the vector v ~5 x and 
on the numerical parameter 6= y - yO near the point u = 0, 6 = 0 

K (v, 6) = i 5 Km,,vmGn, K,, = - B,,, Klo= 0 (2.2) 
rn=l?l=O 

We assume that YO denotes the critical value of the parameter v and that the oper- 

ator A has a pair of purely imaginary eigenvalues T i or, # 0. We seek the nontrivial 

solutions of (2. l), 2n-periodic in ‘G . 
The Navier-Stokes equations represent one particular case of (2.1). another is given 

by e. g, the equations of motion of a viscoelastic body. 
When specific problems are solved, there is usually no need to construct the branch- 

ing equation, the auto-oscillating mode can be sought directly in the form of a power 
series. The distinctive feature of the method lies in the fact that the convergence of 
the series need not be proved seljarately; the conditions of solvability of equations used 
to determine the coefficients are identical to those of the theorems of [lj. If formal 
series (or even their first few terms) satisfying the equations in question can be COILS~IUC- 

ted, they will automatically be found to be convergent. Let us consider the case of 
Theorem 1.4 of [l]. We assume for definiteness that the auto-oscillations appear when 
6 > 0. Setting 6 = e*, we seek a solution of (2.1) in the form of series (*) 

m u1 

u (7) = 2 a%b (z), Cc = 2 aLal, (2.3) 
k=a k=o 

1nSerting these series into (2.1) and equating the coefficients of like powers of e in 
both parts of the equation, we arrive at the following sequence of equations for the 

unknown 2n-periodic functions uk and numbers ok: 

*) It is already clear that urn+1 = 0; they were retained in (2.1) for the sake of greater 
symmetry in the formulas that follow. 
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o,p+Au, = 0 

0 ?E+Av 
o dz 2 

c-6) d”‘+K 
1 dr 

u2 20 1 

a$ + Au, = -co+ o, '2 - B,v, + K~oO(v~,v~) + 

&Jo (VI, VI) = K,, (4, 4) + Go (vz, VI) 

For p = 2,3,. . we have 

coo ‘3 + Au, = 
k-1 

(2.4) 

(2.5) 

Go (VI7 4, Ul) 

GW 

- 2 Bnvm + 2 Km,(vj,, - - l Vjm) sfp 
afl+m=cp A+...+jm+a-p 

(n = 0,i ,...; i,, is, . . . j, = 1,2, . . .) 

(2.7) 

Let us solve these equations one after the other. It was shown in [l] that by displacing 
the time 7 + z + h we can obtain the vector function vk in the following form 

xx 

vk = uk + ok* (a, > 0) [ (uk (r), 0) @da = 0 
0” (2.8) 

I# = cp& + rp*e-iz, AT + io,rp = 0, A*@ - io,@ = 0 

(cp, @I = 1 
with the unknown constants ak (k = 1, 2, . . .). 

Equation (2.4) yields 

Vl (r) = wb b) (2.9) 

Condition of solvability of the equation 

q,$+Au=f (2.10) 

with 2n -periodic functions f and u has the form 

2n 

s 
(f(z),@) e-iT dt = 0 

0 

(2.11) 

with the additional condition 
2x 

S (u(r), 0) e-i7 dr = 0 (2.12) 
0 

We note that the 2x -periodic solution u of (2.10) is unique. The operator R is found 
by setting u = Rf. 

Applying (2.12) to Eq. (2.5) we find that oi = 0. The constant a2 remains unknown, 
while the vector function U, can be found from (2.8) (with k = 2) and 

uz = %2u207 Coo dz + Au,, = K2ll ($7 4)) (2.13) 
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We can write the vector function ~a,, in the form 

uao = 2s -t-z a@*5 + z,*e-s*+ 

20 = A-lK,oO (95 cp*), 22 = (A + 2&J)-1 K,, (cp, (P) 

The condition of solvability of (2.6) has the form 

- 2niw2a1 + gOsOai8 + gllOal = 0 
ax 

go30 = s (G3043 + Go(4,~20h W-*'d~ 
0 

g - --wlcp,~,) 110 - 

and this yields a, and (0% 

Gl = [-Rc;J”, 2nw, = Imgllo- Regllo I= 

429 

(2.14) 

(2.15) 

(2.16) 

If Rf3 glloRw 030 < 0, the cycle branches out for 6 > 0. If on the other hand the above 
quantity is positive, the cycle appears when d < () [lJ, The right hand side of (2.6) 

can be written as 
fs =2w24owk) + !Js 

43 = - %a1 & Z4 -al&~ +a13 F200N4~20) +K30931 (2.17) 

and the vector function p3 can be assumed known, In accordance with (2.17) and (2.13) 

we can write the vector function us in the form 

US = 2w2u2, + w3, ~3 = Rqs (2.18) 

The condition of solvability of (2.7) with p = 4 yields o3 and a, . To obtain them 
we write j4 in the form 

f4 = ti3fo + a22~zo~2 + 2ala3K20*2 - a3al 2 -I- fdO (2.19) 

f. = - co2 g - W + 3a12 W2,0 (u20v $) + K3o*3l (2.20) 

f40 = 
duso 

- 02'12 dz - - a12&u2, + alKaOW4 w3> + a14K2, baa, ~2~) + 

+~ll~21~2+~14~30"~~~9~~2~~+~14~40~4 (2.21) 
We call the trigonometric polynomial even (odd) if it contains the harmonics of 

exp 2ni T (exp (2n + l)i7) only. 

Note that w3 is an odd trigonometric polynomial and fJo is an even one. Therefore 
the insertion of f4 into the condition of solvability (2.11). with (2.15) and (2.16) ta- 

ken into account. yields 

Q2 i 
Re g110 

- 2nifi2 + gllo - 3g03, =g030 
) 

- 2nialw3 = 0 (2.22) 

Since Re gllo .+ 0, from (2.22) follows ct, = o3 = 0. Thus we have 

v (r) = KC,* + 8%a1Uao + 0 (as), 0 = 00 + 6+* + 0 (E4) (2.23) 

Let us describe the procedure of computing the consecutive terms of the expansion 

(2.23). Assume 

U19 u2, . . .u~-~; aI, a2, . . . up-,; al, w2, . . . 0p_2 @ > 5) 

to be already known. Then fpi can be written in the form 
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fp-1 = ~v+JGoV + b-1 (2.24) 

where the vector function h P_lcan be assumed known. In accordance with (2.24), we 
obtain 

%-1= 2w3,-2~2ll+ wp-1, wpml = Rh,_, (2.25) 
Inserting (2.25) into (2.7), the latter defining f,, we arrive at 

fp = - wp-mWd~ + ap-do + 2w~p-,K,,V + fm (2.26) 

containing the known vector function fpO. Inserting jr, into the condition (2.11) of 
solvability of (2.7), we obtain 

- 2xiu,to,_, + ap+ 
( 

rp = 7 (fpO, CD) e-%?z 

0 

(2.27) 

which readily yields os,_i and +a. The formula (2.25) now gives uP_r The process 
can be continued in the same manner. We note that the vector function up is an even 

trigonometric polynomial if p is even, and odd if p is odd. This can easily be shown 

by induction with respect to p . Furthermore, the proof of Theorem 2.2 of [l] implies 
that a,, = 0 (n = 1, 2, . . .). 

On some occasions differenr power series expansions of the auto-oscillations are found 
useful. Let us seek a solution of (2.1) in the form 

2x 

V(T) = a+(a) + u('G), 
j (U(T),@) e+dT = 0 (2.28) 

and the vector function u as well as the numerical parameters o and 6 in the form 
of series in powers of the amplitude a 

m co 

0 = oo+- 2 Pko*‘, 6 = $j &02k, u = 2 o%k (2.29) 
k=l k=l k=2 

Expansions (2.29) are more general than (2.3). They remain valid under the condit- 
ions of Theorems 2.1 and 3.1 of [l] (see the proof of Theorem 2.1) and are of partic- 
ular interest especially in the case when the equation contains a certain complementary 

parameter ?l and, when at certain values of this parameter, the radicand in (2.16) 
changes its sign and the expansions (2.3) no longer hold. We note that similar amplit- 

ude expansions were proposed by landau [4] ([S] deals with the proof of the landau 
method). 

Inserting (2.28) and (2.29) into (2. l), we obtain 

v (z) = a$ + a2uSo + 0 (a”) 

6= - Re go30 2 

RTgllo u + 0 (a”) 

w = 00 + &CL2 + 0 (d), IQ = Im go,, - Re go3o g 

(2.xI) 

3. Stability of the fundamental mode and the auto-oscillation. 
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We can use the perturbation method to investigate the stability of the branched-out 
auto-oscillating mode for the values of the parameter Y close to the critical one. In 

fact, the corresponding linearized equation contains a small parameter b = 19 - y0 

(or its fractional power). When 6 = 0 , this equation becomes a linearized equation 
corresponding to the fundamental stationary mode with y = ys. If this mode shows 

gross instability (the stability spectrum containing the points of the right semiplane),it 

remains such when 6 are small ( and so does the branched-out cycle). For this reason 

we only need to consider the case when all the points of the stability spectrum of the 
fundamental mode with the exception of in co,, (n = 0, Tl, . . .)lie, for y = y,, , 
within the left semiplane. In the end we find that it suffices to learn in which direction 

the excepted points are displaced as a result of a perturbation. In fact, it is enough to 
consider that eigenvalue cr, which becomes (J, = 0 when 6 = 0. The remaining eig- 
envalues have the form o + ilzo,. The eigenvalue crO = 0 is double, and it usually 
splits under the action of a perturbation into two simple ones. One of them is necessa- 
rily zero and is always found in the stability spectrum of the auto-oscillation. We there- 
fore turn our attention to the value of CT different from zero. We find that if Re 0 < 

0, the cycle is stable, if Re o > 0 the cycle is unstable. 
We must remember that the perturbation theory can describe, generally speaking, 

only the behavior of compact fragments of the spectrum, and not of the whole spectrum. 
For this reason an a priori estimate is needed, uniform over small 6 of the real parts 
of those points of the stability spectrum which lie in the right semiplane. Otherwise the 
assertion that no eigenvalues appear in the right semiplane at a distance from the ima- 

ginary axis would not be possible to be made. Of course, instability can be proved 
without an a priori estimate, but the latter is necessary if stability is to be shown 

conclusively. Such difficulties are however not encountered in the problems which are 
dealt with in the present paper; the monodromy operator is completely continuous and 
analytically depends on e, and only a finite number of multiplicators can be found out- 
side the unit circle. Justification for the use of the linearizing procedure in the problem 
on stability of periodic motions of a fluid is given in [6, 71. 

We restrict ourselves to the case of the Theorems 2.1 and 3.2 of [l]. The method 

however can also be used under the conditions of the remaining theorems of [l]. We 

assume for definiteness that the auto-oscillations appear when 6 > 0. 
let us linearize (2.1) in the neighborhood of the periodic solutionu (r). Seeking the 

solutions of the form ebZw (r), where w (-c) is a &r-periodic vector function, we arr- 
ive at the following spectral problem 

(3.1) 

Its right-hand side contains the Frechet derivative with respect to u of the operator K. 
Using the expansions (2.3). we can reduce (3.1) to the form 

o,$+~w+Aw+ fj EkOk $+= 
00 

2 E'Rk@) w (3.2) 
k=z k=l 

where RI, Rt7 .a- are linear operators. In particular, we have 

R,w = K;, (vl, w), R,w = K;,, (us, w) + K;, (~1, ~1, 4 - BP (3.3) 

Equations (3.1) or (3.2) are obviously satisfied if we set 0 = 0 and w = du / dr. We 
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seek the nonzero eigenvalw 
tor w in the fo~~o~~ng form: 

5= 

0 vanishing when e + O,and the corresponding eigenvec- 
OD a3 

it-1 ii=0 

The validity of the expt~~sians (3.4) follows from the perturbation theory, Inserting (3.4) 

into (3.2) and equating the coefficients of like powers of $ in both sides of rhe equation ~ 
we obtain 

MO $g -j- Aw, = - 5$& + lx,,0 (v,, ?&) Wan 

@$g+Aq$= -qWI--sp,- WB 2 + .R,W, + l&W@ fW 

and anallogous expressions for tug, wg, . * + The requirement that the right-hand side 
of (3.5) satisfies the condition oi solvability (2.11) yields, with (3.4) and (2,9) taken 
into accoun& 01 = 0, WI =? t&z, + 2a,ze 2ir (3.7) 
where the ccmsf;lnt a1 is p$+?n by (2.16) and rhe vectors an and x by frJ 

20 = A-‘Kc, fq3, tp”). z ‘-= (A + ~~~~~~~~-~~~~ fC& fP) f3.8) 

Applying the condition af solvabiiity (2,111) to (3.6) we obtain (3.9) 
(52 = ---lo, - (&I& irrj\“+- 2”i2K0 (yi, z,) + Gel (IE,“,@ + J&J ((PC, 9, rp*), CD) 

and, taking (‘2.15) and (2,16) into account, we have 

IZc cfa z2 - ‘f‘$t Re firi,1 = r+o ~~~~~,~~ (3.EI) 

The vector function ii?* can be found from (F&6), and the remaining &!?k and CTk can 
be obtained in a similar manner. Stabiiity of the fundamental mode can be established 
by just considering (3.1) with 1’ -=- 0. Repeating the procedure given above, we obtain 
the following expression for the eigenvalue o : 

B = cr,b -t_ 0 fts’), Be 0” - --Re (B,ql, @) (3.4ff 

and co~s~q~ent~y arrive at the follo.fluing theorem. 
Theorem 3.1. Let the conditions of Theorem 3. f. (or 2.1) of 113 hold, Then the 

fundamental, mode is asymptotically stable for small 8 if bne (B,q, @) > (1, and 
unstable if 6Re (B,cp, CD) < 0. If the conditions of Theorem 3.2 (or 2.2) of p]also 
hold, then tile branching-ant cycle is stable when He (B,y, @)<(J, and unstabte when 

Re @try* @) > 0. 
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